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This is a report of a numerical investigation of #ow past a circular cylinder with the approach
#ow having a spanwise shear. A physical example of such a #ow is a current with axial shear,
#owing past a riser on an o!shore platform. Computational results are reported for three
Reynolds numbers (1 000, 10 000, and 20 000) with a shear parameter value of 0.0393. A 3-D
spectral/"nite-di!erence approximation was used, along with the Smagorinsky model in the
large eddy simulation method, to solve the space-"ltered version of the Navier}Stokes equa-
tions. Using the same numerical method, the shear-#ow results are compared to the results for
a uniform #ow at the same Reynolds number. The e!ect of the shear is evident in the results,
a!ecting both drag and lift coe$cients. There is a slight axial dependence in the drag coe$cients
in the shear #ow results, especially for increasing Reynolds numbers, at the di!erent axial
locations studied. The in#uence of shear on the lift coe$cients at the same locations is not as
strong. We attribute this to the secondary #ow generated by the axial shear in the approach
#ow. Plots of axial and streamwise vorticity for both uniform and shear #ows also demonstrate
the di!erences in the two types of #ow. ( 2001 Academic Press
1. INTRODUCTION

RISERS AND TETHERS OF OFFSHORE PLATFORMS are exposed to currents of varying magnitude
and direction over their length. As such, the risers and tethers are subjected to vortex
shedding which produces vortex-induced vibration (VIV). This vibration is di$cult to
predict even when the current is uniform and in only one direction. When the current varies
along the axis of the cylinder and changes direction as well, the prediction of VIV is
presently not feasible. Our purpose in this study is to present a method to compute the #ow
"eld for a cylinder in an axial shear #ow. The capability of this prediction will eventually
lead to the prediction of VIV for a cylinder in a shear #ow.

There have been many studies that have examined the case of a uniform approach #ow
past a circular cylinder; one of the latest is by Williamson (1996). The uniform #ow problem
is fairly well understood from the #ow physics point of view. Recent results by Lu et al.
(1997) and Breuer (1999), using the large eddy simulation (LES) method, represent the
present state of the art in doing 3-D high Reynolds number calculations for uniform
approach #ows past a cylinder. Lu et al. considered uniform approach #ows to Re"44 200
and obtained very good agreement with experimental data. For example, at Re"44 2000,
the calculated value of C

D
was 1)2 and the r.m.s. value of C

L
was 0)46 compared to

experimental values of 1)2 and 0)48, respectively. Breuer presented results at Re"140 000
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and found reasonably good agreement with experimental results for C
D
; however, results for

C
L

were not presented or discussed. Breuer did note one unusual behavior relating to
convergence of the solution: decreasing the mesh size did not lead to improved accuracy in
the results.

There have been several recent CFD studies which have used the solution of the 2-D
Navier}Stokes equations to provide the input to ordinary di!erential equations to
calculate the VIV oscillations of the cylinder. Meling (1998) used a 2-D "nite-element
procedure, with the one-equation turbulence model of Spalart and Allmans (1992) to
calculate the uniform #ow past a cylinder at Re"21 000. In spite of using the 2-D
description, Meling found excellent agreement between his calculated results and the
experimental results of Moe et al. (1994) The instantaneous calculated results of Meling
were used as the input to a pair of ordinary di!erential equations that described the
response to vortex shedding. Schulz and Kallinderis (1998) also used a 2-D "nite-element
approach to describe the VIV behavior of a circular cylinder. Schulz and Kallinderis
apparently did not use any turbulence modeling in their calculations; in spite of this, they
presented results for Reynolds numbers as high as 4)75]105, but apparently without
experimental corroboration.

A problem even more challenging than the uniform approach #ow problem is an
approach #ow with axial shear. When the current has a spanwise (axial) shear, the #ow
pattern around the cylinder could be in#uenced by the secondary #ow generated by the
leading-edge stagnation-pressure gradient. The secondary #ow in#uences the vortex shed-
ding over the cylinder length. To what extent vortex shedding is in#uenced is a function of
the Reynolds number and the shear parameter b"(D/;

o
) (Lu/Lz)

.!9
, where (Lu/Lz)

.!9
is the

maximum slope of the pro"le, D is the cylinder diameter, and ;
o
is the free-stream velocity

determined by the average of the velocities over the cylinder span in question.
There have been several studies that examined the e!ect of shear in the approach #ow on

vortex shedding and the force that acts on a cylinder present in the #ow. These studies have
shown that a cellular shedding pattern has been observed along with a spanwise variation of
the base pressure. Maull & Young (1973), in one of the earliest studies on the subject,
noticed the spanwise variation of base pressure across the cellular wake structures in
a linear shear #ow past an airfoil-shaped body with a #at trailing edge. Mair and Stansby
(1975) conducted essentially an extension of the Maull and Young study by performing
similar experiments on relatively slender cylinders. Mair and Stansby found the base
pressure to be a function of the mean Reynolds number and the shear parameter. Later
experiments by Peltzer and Rooney (1981) with 0(b(0)026, and Peltzer (1982) reported
a spanwise variation of base pressure, but seemingly without a relationship to a cellular
pattern. Vandiver et al. (1996) studied the phenomenon of lock-in under highly sheared
conditions. They found that, when the shear is high, lock-on was likely to occur because of
the dominance of a single mode of vortex shedding over other modes. Mukhopadheyay
et al. (1999) performed a direct numerical simulation of a linear shear #ow past a circular
cylinder at a mean Reynolds number of 131)5 and b"0)2. (At this value of Re, there is no
turbulence present and the #ow without shear is 2-D.) Their numerical results showed the
same cellular shedding pattern as noted by previous investigations even at much higher
values of Re, quite likely due to the relatively larger value of b.

2. MATHEMATICAL FORMULATION

For the present analysis, the #uid is considered to be viscous and incompressible. The
Reynolds numbers for this e!ort are su$ciently large for the wake #ow to be turbulent.
Thus, the large eddy simulation (LES) method will be used to represent the #uid motion.
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[See Lu et al. (1997) for details of LES applied to #ow past a cylinder.] Since a spanwise
shear #ow produces a spanwise (z-direction) velocity component in the #ow "eld near the
cylinder, the basic #ow "eld is 3-D and not just due to the turbulence present.

The governing equations for this e!ort are the continuity equation and the Navier}
Stokes equation in general coordinates. The physical space is (x

1
, x

2
, x

3
) and the computa-

tional space is (m
1
, m

2
, m

3
). In general coordinates, the continuity equation is
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Also, in general coordinates, the Navier}Stokes equation in LES form is
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where Re";
o
D/v and J~1 is the inverse of the Jacobian which is

J~1"det (Lx/Lm
m
), i"1, 2, 3, m"1, 2, 3. (3)

Also, in equation (2), we have the following de"nitions:
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In equations (1) and (2), the velocity u
i
is called the resolved velocity "eld with the subgrid

scale e!ects to be modeled, in this case, by the Smagorinsky (1963) method. For the
simulations here, the physical space is represented by (x

1
, x

2
, x

3
)"(x, y, z) and the

computational space by (m
1
, m

2
, m

3
)"(m, g, z), where m, g and z correspond to the general

radial, circumferential and spanwise directions, respectively. Thus, we have

J~1"xmyg!xgym . (5)

In equation (4c), the eddy viscosity term, l
T
, is represented by the Smagorinsky (1963) model

for the subgrid scale stresses,
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C
s
is a constant, speci"ed a priori, and D is the cube root of the product of the three mesh

spacings. A value of C
s
equal to 0.1 was used for these calculations.

3. BOUNDARY AND INITIAL CONDITIONS

The approach #ow to the cylinder is described as a sinusoidal #ow over the computational
length of the cylinder. This approach #ow is shown in Figure 1 where the approach velocity
is given by

; (z)";
o
!;

p
sin(2nz/¸), (7)

where;
o
is the mean velocity, ;

p
is the maximum velocity in the sinusoidal wave, and ¸ is

the wavelength of the approach #ow. The approach velocity is chosen to have a sinusoidal



Figure 1. Flow con"guration and coordinate system.
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variation because of the periodic boundary conditions that are available at z"0, ¸. If
a linear shear #ow were chosen to represent the approach #ow, it would not be possible to
prescribe boundary conditions at z"0, ¸ with an open axial boundary at each location.
The presence of a stagnation pressure gradient along the leading edge of the cylinder due to
the change in approach velocity in a linear shear #ow means that the #ow at any given value
of axial coordinate is an unknown, 3-D #ow because of the secondary #ow generated.
Therefore, z-direction boundary conditions at z"0, ¸ cannot be speci"ed for a linear shear
#ow with open boundaries at these two locations. In contrast, specifying the approach #ow
as sinusoidal, as in Figure 1, means that the boundary conditions at z"0, ¸ can be
speci"ed. Whatever the #ow is at z"0, ¸, it is the same. Thus, periodic boundary
conditions can be prescribed at these two locations. Thus, the z-direction boundary
conditions at z"0, ¸ are

uN
i
(m, g, 0)"uN

i
(m, g, ¸), i"1, 2, 3,

PM (m, g, 0)"PM (m, g, ¸). (8)

Mukhopadhyay et al. (1999) used a linear shear #ow in their calculations. However,
a di!erent type of boundary condition was used at z"0, ¸. They used end plates in their
model so that no #ow (i.e., secondary #ow) crossed the computational boundaries in the
z-direction. We considered this approach, but decided to leave the axial boundaries open;
hence, we used the sinusoidal approach velocity.

The boundary conditions on the surface of the cylinder are

uN
i
(1, g, z)"0, i"1, 2, 3. (9)

The boundary conditions in the circumferential direction are periodic,

uN
i
(m, g, z)"uN

i
(m, g#2n, z), i"1, 2, 3,

PM (m, g, z)"PM (m, g#2n, z). (10)
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Out#ow boundary conditions must be speci"ed so that vortices can pass the out#ow
boundary unhindered by the presence of the boundary. These boundary conditions are not
a trivial issue since they can in#uence the inner #ow by the incompressible nature of the
#uid. Many researchers, such as Gresho & Sani (1987) and Mittal & Balachandar (1994)
have discussed these out#ow boundary conditions. However, there is not yet a "rm
agreement about what these out#ow boundary conditions should be to provide an accurate
solution. Our position on the out#ow boundary conditions is the following:

L2uN
i

Lm2
"

LuN
i

Lm
"0, i"1, 2, 3. (11)

These out#ow boundary conditions are applied to that part of the boundary at or near
where vortices cross the boundary which is determined from preliminary calculations and
depends on the Reynolds number. The remaining part of the far-"eld boundary is con-
sidered to have undisturbed #ow crossing it. These out#ow boundary conditions allow the
vortices to cross the out#ow boundary undisturbed as will be seen in the results to be
presented.

The computational length of the approach #ow is in the region indicated by ¸ in Figure 1.
However, the region over which we will examine results is speci"ed by the length ¸

c
("¸/2). It is within this region that the approach vorticity for the #ow described in
equation (7) is of constant sign. This is what is needed for the secondary #ow generated by
the leading-edge stagnation-pressure gradient to be in the negative z-direction.

4. FORCE DESCRIPTION

Determination of the velocity "eld allows the instantaneous force to be calculated from an
integration of the circumferential pressure and vorticity distributions on the cylinder
surface. Nondimensionalizing the drag and lift forces by 1

2
o;2

o
D to obtain the drag and lift

coe$cients, we get
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In equations (12) and (13), the "rst integral is the force contribution due to the pressure
distribution and the second integral is the force due to the shear stress. The average over the
length ¸

c
(¸/44z43¸/4) is a straightforward computation; the averages are
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where the term u
z
, the spanwise vorticity, is based on the resolved velocities.
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5. NUMERICAL SOLUTION

To discretize the governing equations, we use a combined spectral/"nite-di!erence approxi-
mation. A Fourier spectral description is used in the axial direction and a "nite-di!erence
approximation is used in the plane parallel to the direction of the approach #ow. The
convective terms are represented by a third-order upwinding scheme. A multigrid method
was used to solve the "nite-di!erence form of the equations.

We use a second-order fractional step method (FSM) to advance the governing equations
in time. In this approach, we "rst "nd an intermediate velocity by omitting pressure and
using the second-order Adams}Bashforth scheme on the convective terms and the
Crank}Nicolson scheme on the viscous terms. This intermediate velocity is corrected by
pressure, which is obtained through a Poisson equation, to satisfy the continuity equation.
Finally, the boundary conditions on velocity are applied to obtain the velocity at the next
time step. [See Lu et al. (1997) for the details of the FSM used herein.]

6. RESULTS

The method described in the previous sections has been applied to the problem of a #ow
with a spanwise shear past a "xed circular cylinder. The approach #ow has been described
with a sinusoidal component imposed on a current with a "xed mean value. As stated
earlier, the approach #ow is sinusoidal because of the convenience of the boundary
conditions at z"0, ¸. However, because of the desire to examine the #ow only in regions of
shear of like sign, we will present results in the range of z given by ¸/44z43¸/4. We will
compare calculations of drag and lift results for both uniform #ow and a sinusoidal shear
#ow. These comparisons are done for Re "1 000, 10 000, and 20 000 with the shear #ow
parameter, b"(D/;

o
) (Lu/Lz)

.!9
, equal to 0.0393. This value of shear parameter corres-

ponds to ;
p
/;

o
"0)025 and the velocity varies from 0)975;

o
to 1)025;

o
over the length ¸

C
.

The mesh for Re"1000 is 129]129]16 (m, g, z) and the time step is Dt"0)005. For
Re"10 000 and 20 000, the mesh is 129]l93]16 (m, g, z) and Dt"0)0025. The length of
the cylinder shown in all the vorticity plots is the length ¸

c
which, in these calculations, was

2D. The total computational length was 4D. A convergence test was done at Re"20 000
and the results of that test will be presented in that section.

6.1. RESULTS FOR Re"l 000, b"0.0393

Figures 2 and 3 show vorticity patterns for this case for both the streamwise and axial
vorticity distributions. Figure 2 shows a comparison of the streamwise vorticity, u

r
, for

a uniform approach #ow and a shear #ow. The e!ect of the shear is clearly evident on the
fore part of the cylinder with three cells plainly visible. The uniform #ow result, in contrast,
has no structure on the fore part of the cylinder. The near wake of the shear #ow calculation
has features that are distinct from the uniform #ow calculation. The far wake is less distinct
between the two situations, but there is still a di!erence in the axial structure of the
streamwise far wake vortical structures. Figure 3 shows the axial vorticity, uz, which
indicates far less di!erence between the two di!erent approach #ows.

Figure 4 shows the drag and lift coe$cients, averaged over the length ¸
c
(¸/44z43¸/4

in Figure 1), for both uniform and shear #ow cases. Once the #ow has become established at
a dimensionless time of about 60, the drag and lift coe$cients develop a fairly regular
pattern for both cases. The calculated mean value of the drag coe$cient at Re"1000 is
about 1.07, while the experimental value at this Reynolds number is 1.05. Comparing these
values is not a true test of convergence; but, for an unsteady #ow, it is an adequate test and



Figure 2. Streamwise vorticity distribution at Re"1 000. Top: uniform #ow; bottom: shear#ow.

Figure 3. Axial vorticity distribution at Re"1 000. Top: uniform #ow; bottom: shear #ow.

FORCE ON A CYLINDER IN SHEAR FLOW 947
perhaps the only test available, in the absence of extensive statistical data in the wake which
is not available for such #ows. The onset of vortex shedding is triggered numerically and the
onset is dependent on mesh size. Therefore, a comparison of results at di!erent mesh sizes at
the same computational time will more than likely have a phase di!erence even though the
same mean drag is produced. With such a phase di!erence, it is not possible to make any
comparisons at the same computational time. This issue has been discussed by Lu et al.
(1997). However, even at the same mesh size, there is a phase di!erence between the uniform



Figure 4. Length-averaged C
D

and C
L

versus time at Re"1 000: ***, uniform #ow; } } } } } ,
shear #ow.
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and shear #ow plots in both the drag and lift signals. There is also evidence of a higher
harmonic in the shear #ow case. Figure 5 shows a plot of the drag and lift coe$cients at
three di!erent locations along the length of the cylinder for the shear #ow case. The drag
plot shows more of an e!ect of location than the lift plot. According to equation (7), the
dimensionless velocity at z"3¸/8 is 0)965; at z"¸/2, it is 1)0; and at z"5¸/8, it is 1)035.
These velocities produce such slight variation in the value of Re that essentially no change
in C

D
should be expected in the 2-D sense. However, Figure 5 shows a decrease in the value

of C
D

with increasing velocity, but with virtually no phase di!erence in the calculated
results. The value of C

D
at the highest point is 1)05, 1.1 at the midpoint, and 1.15 at the

lowest point. There is a slight phase shift present in the drag plot as well as a magnitude
di!erence at the extremes of the region being compared. The lift plot shows a very slight
magnitude di!erence, also with no phase di!erence at the three locations. This result also
indicates that the vortex shedding at the three di!erent z locations is in phase. We suggest
that this in-phase behavior of C

D
and C

L
at the three di!erent axial positions is due to the

secondary #ow (the z-direction velocity) which is the result of the shear #ow. This secondary
velocity, which is in the negative z-direction, seems to be su$cient to cause axially
correlated vortex shedding over the computational region at this value of the shear
parameter.

6.2. RESULTS FOR Re"10 000, b"0)0393

The vorticity patterns for this case are compared in Figures 6 and 7. Figure 6 shows the
streamwise vortical structure for both types of #ows. The uniform approach #ow, having no
upstream vorticity, has no streamwise vortical structure until the formation of the separated
shear layer leading to the shedding of the wake vortices. The vortical structure in the shear
#ow is quite evident on the front part of the cylinder due to the vorticity present in the
approaching #ow. The wakes of the two #ows are quite similar, however, with little distinct



Figure 6. Streamwise vorticity distribution at Re"10 000. Top: uniform #ow; bottom: shear #ow.

Figure 7. Axial vorticity distribution at Re"10 000. Top: uniform #ow; bottom: shear #ow.

doi:10.1006/j#s.2001.0390
Y. XU AND C. DALTON



Figure 5. C
D

and C
L

versus time at three di!erent axial positions at Re"1 000:***, z"3¸/8;
} } } } } , z"¸/2; . . . . . . , z"5¸/8.
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di!erence between them. The axial vorticity is shown in Figure 7 for both uniform and shear
#ows. There is a cellular pattern present in the uniform #ow result which is expected due to
the axial variation of vortex shedding even in a uniform #ow. The cellular pattern is even
more noticeable in the shear #ow plot, especially in the far wake where some of the "ne
vortical structure has been damped through the e!ects of viscosity.

Figure 8 shows the drag and lift coe$cients, averaged over the length ¸
c
. The uniform-

#ow drag coe$cient is about 1)25 which agrees with the experimental value of 1)2. The
length-averaged shear-#ow drag coe$cient, at this Reynolds number, does not have as
consistent a behavior as the length-averaged uniform-#ow drag coe$cient. We surmise that
the secondary #ow generated by the leading-edge stagnation pressure gradient is a!ecting the
base pressure. This behavior has a smoothing e!ect on the length-averaged drag coe$cient.
This is also evident in the length-averaged lift coe$cient where a &&phase di!erence'' has
developed in the uniform-#ow and shear-#ow results. This is not really a phase di!erence
since these two #ows are not the same; instead, the di!erence in the plot indicates a slightly
larger value of the Strouhal number for the spatially averaged shear #ow result.

Figure 9 shows the drag and lift coe$cients for the shear #ow at three di!erent axial
positions. The drag coe$cient plots are essentially in phase from about t"30. The lowest
point again produces the highest value, C

D
"1)3, while the two higher locations yielded

C
D
"1)25. The drag calculations are in phase, as was the case for Re"10 000. The lift

coe$cients are also in phase and vary slightly in peak value. The in-phase behavior again
suggests a correlated vortex-shedding pattern over the computational length of 4D taken
for this analysis.

6.3. RESULTS FOR Re"20 000, b"0)0393

Figures 10 and 11 show the streamwise and axial vorticity distributions for this last case.
The plot of the streamwise vorticity distributions in Figure 10 shows the e!ects on



Figure 8. Length-averaged C
D

and C
L

versus time at Re"10 000:***, uniform #ow; } } } } } ,
shear #ow.

Figure 9. C
D

and C
L
versus time at three di!erent axial positions at Re"10 000:***, z"3¸/8;

} } } } } , z"¸/2; . . . . . , z"5¸/8.
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the fore part of the cylinder of the vorticity in the approach #ow. The mixing
in the wake for the shear-#ow case is more prominent than in the uniform-#ow case. Figure
11 shows how the uniform-#ow and shear-#ow axial vorticity patterns compare. The
vortical structure in the separated shear layer for the approaching #ow with shear is



Figure 10. Streamwise vorticity distribution at Re"20 000. Top: uniform #ow; bottom: shear
#ow.

Figure 11. Axial vorticity distribution at Re"20 000. Top: uniform #ow; bottom: shear #ow.

doi:10.1006/j#s.2001.0390
Y. XU AND C. DALTON



Figure 12. C
D

and C
L

versus time at three di!erent axial positions at Re"20 000: ***,
z"3¸/8; } } } } } , z"¸/2; . . . . . , z"5¸/8.
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irregular, while the same separated shear layer in the uniform #ow case is relatively smooth.
After the vortical structures have been shed, the #ow patterns in both the near and far wakes
are quite distinct. However, the far wake is much less distinct between the two cases which is
an indication of the turbulent mixing present and the decay of the secondary #ow generated
by the stagnation pressure gradient on the fore part of the cylinder.

Figure 12 shows the drag and lift coe$cients at three di!erent locations in the range
(¸/44z43¸/4). As for the two lower Reynolds numbers, the lift coe$cient results are
essentially in phase, but again with a very slight magnitude di!erence. However, at this
highest Reynolds number, the drag coe$cient plot shows the same trends as at Re"10 000.
The highest value (C

D
"1)3) is again at the lowest position while the two higher locations

yielded C
D
"1)25. These C

D
plots are again essentially in phase from about t"30. As

before, C
L

is in phase for each of these locations with only a slight variation in peak values.
The absence of any phase di!erence in the lift coe$cients at various positions along the

cylinder length could be a numerical artifact due to the computational length being too
short. So, we have investigated the computational length e!ect on the lift coe$cients by
doubling the length ¸

c
on which the comparisons are made. Figure 13 shows the lift

coe$cient at the center section of the cylinder for two cases, ¸
c
"2D and 4D. There is only

a slight e!ect present due to the increased computational length. Thus, we feel that our
previously stated comment about the secondary #ow having a strong in#uence on the phase
behavior is valid and the longitudinal correlation of vortex shedding is enhanced, at least for
the set of parameter values in this study.

Figure 14 shows the results of a convergence test performed at Re"20 000. We have
compared the drag and lift coe$cients at two di!erent mesh sizes, 129]193]16 and
193]225]16 (m, g, z). The results are virtually the same once a steady #ow pattern is
achieved, with a slight phase di!erence in the lift coe$cient due to a slight mesh-size e!ect
on wake instability at the onset of vortex shedding. Even though this is a global comparison



Figure 13. Sectional drag and lift coe$cients of the shear #ow at z"¸/2 for Re"20 000 with two
di!erent lengths of cylinder: ***, ¸

C
"2D; } } } } } , ¸

C
"4D.

Figure 14. Convergence test for uniform #ow at Re"20 000: ***, 129]193]16; } } } } },
129]225]16.

952 Y. XU AND C. DALTON
as opposed to a comparison of the actual numerical solutions, it must su$ce because it is
not meaningful to compare the numerical solutions in a highly time-dependent problem
such as this.
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7. CONCLUSIONS

This numerical investigation has shown a di!erence in the vorticity patterns and the drag
and lift coe$cients between approach #ows with axial shear and no axial shear. Our code
has been validated for the uniform #ow case at each of the three Reynolds numbers studied.
The vortical patterns shown in the "gures are distinct and show a clear di!erence between
the two approach #ows and between the shear #ow results as the Reynolds number
increases. The drag coe$cient in the shear #ow results has a slight axial dependence. The
length-averaged drag coe$cients for the shear-#ow cases has smoothed the axial e!ects and
is somewhat di!erent in character from the drag coe$cients at each of the axial locations
represented. The only noticeable di!erence in the length-averaged lift coe$cients is a phase
di!erence between the uniform-#ow and shear-#ow results at the two higher Reynolds
numbers. We suggest that the in-phase behavior of the lift coe$cients is due to the
secondary #ow generated on the fore part of the cylinder, at least for the parameters
involved in this numerical study.

Since this problem has obvious interest to the o!shore industry, additional calculations
and experiments are needed over several values of the shear parameter and for several other
Reynolds numbers to gain a better understanding of the e!ect of shear on drag, lift, and
vortex shedding.
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